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- Some of the Technical Issues

< Coupled Blade Row Strategy (Navier-Stokes)

» Blade/Vane Ratio Problem (Multiple-Passage Domains)

» Information Transfer Across the Sliding Interface

» Turbulence Modeling

» Grid Issues (Structured v. Unstructured, Topology, Resolution)
» Time Accuracy

> ...

> Iterattve BIade-Row Coupllng ’?

» Grid Issues

» Time Accuracy / Frequency Resolution
> ..
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J LINFLUX Tone Noise Prediction Results
<+ Wind Tunnel Test Data

» Realistic Configurations
» Flow and Acoustic Data

SDT Fan
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SDT Cut-On Stator (26-Vanes)

Total

114

Total

125
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» Converged TURBO and LINFLUX Solutions (Poor Quality Meanflow, “Separated” at the Hub)

- Mixed Noise Reduction Benefits Predicted at 2xBPF (w.r.t. Radial SPLs & PWL.s)

m,n SPL PWL Black: Radial OGV (Theory).
Biue: Straight Lean OGV (Theory)
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 Synopsis
» Converged TURBO and LINFLUX Solutions (Meanflow Solution Could be Improved Further)

« Sizable Noise Reduction Benefits Predicted at 2xBPF (w.r.t. Radial SPLs & PWLs)

m,n SPL PWL Black: Radial OGV (Theory)
Blue: Composite Lean (Theory)
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Upstream of OGV

Mid-Chord

Downstream of OGV
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0O Need a robust mean flow solution for reliable LINFLUX results.

a Inviscid mean flow calculations are problematic for unconventional

0 Do linearized Navier-Stokes methods offer any advantages?

Q If so, can one do “selective” linearization?
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. In Na vier-Stokes nr ;Qde the code is designed to be
ither 2 I NS solv no tu rbul ence n .s«l I) a LES
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Closeup of Cambered Airfoil Grid

k=1.0
1D gust

¥V velocity Perturbation Pressure

In this benchmark CAA problem,
the effects of wall geometry,

gust geometry, curvilinear grids,
and farfield boundary conditions
are tested.
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Symmetric
Alrfoil

Airfoil

1-DGust, k=1.0

2-D Gust, k=10.1

GUST3D Results
Leompmisd Beaulis
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Airfoil

1-D Gust, k= 0.1

1-DGust, k=1.0

2-DGust, k=1.0
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GUST3D Results
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BMS Pressure Perturbation on Airfoil
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- 1x 2x & 3xIPF
— Amplitudes ~ 9%, 0.9% & 0.2%
inimum Wavelength is on erder of 3/11 0f the Chc)rd
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Mean Pressure
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Why Arbitrarily High-Order?

1st Order
3rd Order
5th Order
- 7th Order
9th Order
11th Order
13th Order
15th Order
17th Order
19th Order
21st Order
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Computational Cost per Wavelength
o

1st Order
3rd Order
5th Order
- 7th Order
9th Order
11th Order
13th Order
15th Order
17th Order
19th Order
21st Order
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* Propagating waves accurately in tir
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p(x,y,t+At)=p(x,y,t)+@D();y D prs

« Requires high order time derivatives
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« Advantages

= No metrics

» No singularities

= Easy grid generation
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= Surface interpolation algorithm

= Adaptive resolution with h and p refinement
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= Curvature more easily resolved
13.82

» Centered boundary stencils with ghost points

5525
= Computing very high-order metric derivatives

= 1t order grid singularities

= High order boundary conditions are more complex
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Computational AeroAcoustics for
Fan Noise Prediction

Ed Envia Ray Hixon Rodger Dyson
NASA GRC University of Toledo NASA GRC

An overview of the current state-of-the-art in computational aeroacoustics as applied to fan
noise prediction at NASA Glenn is presented. Results from recent modeling efforts using three-
dimensional inviscid formulations in both frequency and time domains are summarized. In
particulat, the application of a frequency-domain method, called LINFLUX, to the computation of
rotor-stator interaction tone noise is reviewed and the influence of the background inviscid flow on
the acoustic results is analyzed. It has been shown that the noise levels are very sensitive to the
gradients of the mean flow ncar the surface and that the correct computation of these gradients for
highly loaded airfoils is especially problematic using an inviscid formulation. The ongoing
development of a finite-difference time-marching code that is based on a 6™-order compact scheme
is also reviewed. Preliminar; results from the nonlinear computation of a gust-airfoil interaction
model problem demonstrate the fidelity and accuracy of this approach. Spatial and temporal features
of the code as well as its multi-block nature are discussed. Finally, latest results from an ongoing
effort in the area of arbitrarily high-order methods are reviewed and technical challenges associated
with implementing correct high-order boundary conditions are discussed and possible strategies for
addressing these challenges are outlined.



